Statistical Compressed Sensing of Gaussian Mixture Models
نویسندگان
چکیده
منابع مشابه
Online Adaptive Statistical Compressed Sensing of Gaussian Mixture Models
A framework of online adaptive statistical compressed sensing is introduced for signals following a mixture model. The scheme first uses non-adaptive measurements, from which an online decoding scheme estimates the model selection. As soon as a candidate model has been selected, an optimal sensing scheme for the selected model continues to apply. The final signal reconstruction is calculated fr...
متن کاملCompressed Domain Image Retrieval Using JPEG2000 and Gaussian Mixture Models
We describe and compare three probabilistic ways to perform Content Based Image Retrieval (CBIR) in compressed domain using images in JPEG2000 format. Our main focus are arbitrary non-uniformly textured color images, as can be found, e.g., in home user image collections. JPEG2000 offers data that can be easily transferred into features for image retrieval. Thus, when converting images to JPEG20...
متن کاملStatistical mechanics of compressed sensing.
Compressed sensing (CS) is an important recent advance that shows how to reconstruct sparse high dimensional signals from surprisingly small numbers of random measurements. The nonlinear nature of the reconstruction process poses a challenge to understanding the performance of CS. We employ techniques from the statistical physics of disordered systems to compute the typical behavior of CS as a ...
متن کاملCompressive Sensing via Low-Rank Gaussian Mixture Models
We develop a new compressive sensing (CS) inversion algorithm by utilizing the Gaussian mixture model (GMM). While the compressive sensing is performed globally on the entire image as implemented in our lensless camera, a lowrank GMM is imposed on the local image patches. This lowrank GMM is derived via eigenvalue thresholding of the GMM trained on the projection of the measurement data, thus l...
متن کاملFuzzy Gaussian Mixture Models
In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2011
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2011.2168521